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ABSTRACT 

We show that the existence of a perfect set of random reals over a model 

M of ZFC does not imply the existence of a dominating real over iV/, thus 

answering a well-known open question (see [BJ 1] and [.IS 2]). We also 

prove that  B x B (the product  of two copies of the random algebra) nei ther  

adds  a dominat ing real nor adds  a perfect  set of random reals (this answers 

a question tha t  A. Miller asked during the logic year at, MSRI). 

Introduct ion  

The goal of this work is to give several results concerning the relationship between 

perfect sets of random reals, dominating reals, and the product of two copies of 

the random algebra B. Recall that B is the algebra of Borel sets of 2 "~ modulo 

the null sets. Also, given two models M C_ N of ZFC, we say that g E 0J" f3 N 

is a d o m i n a t i n g  rea l  over  M iff Vf E w '~ rl M qm E 0~ Vn > m (g(n) > f(n)) ;  

and r E 2 '~ f3 N is r a n d o m  over  M iff v avoids all Borel null sets coded in M 

iff r is the real determined by some filter which is B-generic over M (see [Je 1, 

section 42] for details). 

A t r e e  T C_ 2 <'~ is p e r f e c t i f f V t  E T 3 s  _D t (s^(0) E T As^(1) E T). For 

a perfect tree T we let [T l := {f  E 2'~; Vn ( f i n  E T)} denote the set of its 

branches. Then [T] is a perfect set (in the topology of 2~'). Conversely, given a 

perfect set S _C 2 °, there is perfect tree T C_ 2 <'~ such that [T] = S. This allows 
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us to confuse perfect sets and perfect trees in the sequel; in particular, we shall 

use the symbol T for both the tree and the set of its branches. - -  As a perfect 

tree is (essentially) a real, the statement there i8 a perfect set of real~ random 

over M in N (where M C N are again models of Z F C )  asserts the existence 

of a certain kind of real in N over M; and thus we may ask how it is related 

to the existence of other kinds of reals (like dominating reals). This will be our 

main topic. - -  We recall that the existence of a random real does not imply the 

existence of a perfect set of random reals; in fact Cichofi showed that • does 

not add a perfect set  of random reals [BJ 1, Theorem 2.1]. (Here, we say that a 

p.o. P adds a perfect set of random reals iff there is a perfect set of reals random 

over M in M[G], where G is P-generic over M; a similar definition applies to 

dominating reals etc.) 

We note that being a perfect set of random reals over some model M of Z F C  

is absolute in the following sense: if M C No C N1 are models of Z F C ,  T E 

(2<w) '° O No is a perfect tree so that [T] f) No consists only of reals random over 

M, then every real in IT] NN1 is random over M as well (see [Je 1, Lemma 42.3]). 

We now state the main results of our work, and explain how they will be 

presented in §§ 1 - 3; then we will give some further motivation for the study of 

perfect sets of random reals, and close with some notation. 

THE MAIN RESULTS AND TIlE ORGANIZATION OF TIlE PAPER. Using techniques 
of [Ba], Bartoszyfiski and Judah proved in [BJ 1, Theorem 2.7] that 

(*) given models of Z F C  M C_ N such that N contains a dominating real over 

M, N[r] contains a perfect set of random reals over M, where r is random 

over Y .  

Our first result shows that the converse does not hold (1.4 - 1.7). 

THEOREM 1: There is a p.o. which adds a perfect set of random reals and does 

not add dominating reals. 

The framework for proving Theorem 1 (developed in § 1) will enable us to give 

general preservation results for not adding dominating reals in both finite support 

iterations and finite support products of cec forcing notions (1.8). The former will 

be exploited in 1.9 to discuss cardinal invariants closely related to our subject. 

As a special instance of the latter we shall show (1.10) 

THEOREM 2: B X B does not add dominating reals. 
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(This result was proved earlier by Shelah but never published.) The algebra 

B x B is rather different from B; e.g. it is well-known that B × B adds Cohen 

reals whereas ]~ does not (see [Je 2, part I, 5.9]). As it is known that some other 

forcing notions adding both Cohen and random reals (like B × C ~ ~ * C and 

C * B, where C is the Cohen algebra, and * denotes iteration) do not add perfect 

sets of random reals (see [JS 2, 2.3] for ~ × C and [BJ 1, Theorem 2.13] for C . B ) ,  

we may ask whether B × B does. We shall show in § 2 that the answer is again 

negative. 

THEOREM 3: B X B does not add a perfect set of random reals. 

The argument for this proof (which uses ideas from the proof that B does not add 

a perfect set of random reals - -  see [BJ 1, 2.1 - 2.4]) is rather long and technical; 

and one might get a shorter proof if the following question has a positive answer. 

QUESTION 1: Is B x B a complete subalgebra of C * B? 

We note here that all other embeddability relations between these three algebras 

adding both Cohen and random reals (namely, B x C, B × B, C * B) are known. 

We shall sketch the arguments which cannot be found in literature in 3.1. 

Two further open problems are closely tied up with the Bartoszyfiski-Judah 

Theorem (*) and our Theorem 1, respectively. 

QUESTION 2: Given models of Z F C  M C N such that N contains both a domi- 

nating real and a random real over M,  is there a perfect set of raz~dom reals over 

M i n N ?  

We shall show in 3.2 that to answer Question 2 it suffices to consider the problem 

whether B x D ~ B * D adds a perfect set of random reals, where D is Hechler 

forcing. We note that for many p.o.s P adding a dominat!ng real (e.g. Mathias 

forcing) it is true that B x P adds a perfect set of random reals (3.3). 

QUESTION 3: Given models of Z F C  M C_ N,  does the existence of a perfect set 

of random reals over M in N imply the existence of an unbounded real over M 

in N?  

Here we say that g E w w f~N is an unbounded real over M i f f V f  E w wN 

M q°°n (g(n) > f (n) ) ,  where 3°°n means there are infinitely many n (dually, 

V°°n abbreviates for all but finitely many n). 
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Motivation: One of the reasons for studying perfect sets of random reals con- 

terns finite support iterations of tee forcing notions. Namely, let (P,,  Q,;  n E w) 

be an w-stage finite support iteration such that for all n E w, [ h ' .  "Qn is ccc". 

Then the following are equivalent [JS 2, Theorem 2.1]: 

(i) There exists r 6 V[G,o] \ [.J. V[G.] random over V,  

(ii) there exists n E w and T E V[Gn] a perfect set of random real~ over V,  

where (Gi; i < w) is a chain of Pi-generic filters. So adding a random real in 

the w-th stage is stronger than just adding a random real in an initial step (on 

the other hand, P~ adds a dominating real is simply equivalent to there is an 

n E w such that Pn adds a dominating real [JS 1, Theorem 2.2]). Also perfect 

sets of random reals seem to play an important role in the investigation of the 

problem, posed by Fremlin, whether the smallest covering of the real line by 

measure zero sets can have cofinality w. To build a nmdel of Z F C  where this 

is true we suggest an iterated forcing construction (with finite supports) which 

firstly adds w~ many Cohen reals over L to produce a fanfily of ww null sets 

which will still cover the real line in the final extension, and then goes through 

every subalgebra of the random algebra which is the randoln algebra restricted 

to some small inner model (in which the continuum has size < w~,) in w~+l steps 

(see the introduction of [:IS 3] for details). By construction, we destroy all small 

covering families. So the main problem is to show that we do not add a real 

which does not belong to the family of w~, null sets added in the intermediate 

stage. To do this, it suffices (essentially) to prove that the whole iteration does 

not add a perfect set of random reals over the ground model L. We think that 

our Theorem 3 is a small but important step in this direction, and we hope that 

the ideas involved can be generalized to give a positive answer to 

QUESTION 4: Let A be a complete subalgebra of  B. Let BA be an A-name for 

B. Is it true that B * BA does not add a perfect set of  random reMs? 

Cichofi's Theorem [BJ 1, Theorem 2.1] says that this is true if A = B, and our 

Theorem 3 gives a positive answer in case A is trivial. 

Notation: Our notation is fairly standard. We refer the reader to [Je 1] for set 

theory and to [Ox] for measure theory. Most of the cited material will appear in 

the forthcoming book [BJ 2]. We now explain some notions which might be less 

familiar. 

Given a finite sequence s (i.e. either s E 2 <w or s E w<'~), we let lh(s) := 



Vol. 83, 1993 PERFECT SETS OF RANDOM REALS 157 

dora(s) denote the length of s; for £ E lh(s), sre is the restriction of s to g. ^ is 

used for concatenation of sequences; and 0 is the empty sequence. Furthermore, 

for s E 2 <°', [s] := {f  E 2'~; frlh(s) = s} is the set of branches through s (the 

open subset of 2" determined by s). 

Given a perfect tree T C 2 <w and s E T, we let Ts := {t E T; t _C s or 

s C_ t}; and stem(T) := U{s E T; Ts = T} is the stem o f T .  For£  E to, we 

let Tf~ := {s E T; lh(s) < e}, the finite initial part of T of height e. We will 

confuse finite trees T with all branches of fixed length e with the set of branches 

[T] := {s ~ T; lh(s) = ~}. 
We assume the reader to be familiar with forcing and Boolean-valued models 

(see [Je 1], [2e 21). We suppose that all our p.o.s (forcing notions) have a largest 

dement  1 . Given a p.o. P E V, we shall denote P-names by symbols like f ,  T, 

... and their interpretation in V[G] (where G is P-generic over V) by fiG], ~'[G], 

... If ~ is a sentence of the P-forcing language, we let II ~ II be the Boolean value 

of ~; i.e. the maximal dement  forcing ~0 in the complete Boolean algebra r.o.(P) 

associated with P. We shall often coufuse P and r.o.(P). 

We equip B x B := {(p,q); p,q E B\{0}}  U {0} with the product measure 

(i.e. #(p, q) =/~(p) •/~(q)). Then/~: B × B ~ [0, 1] is finitely additive and strictly 

positive (any non-zero condition has positive measure). By [Ka, Proposition 2.1], 

/~ can be extended to a finitely additive, strictly positive measure on r.o.(B × B). 

This will be used in 2.5. Note that this measure is not a-additive. 

1. Not adding dominating reals 

1.1 We shall now introduce the framework needed to prove Theorem 1. Besides 

giving the latter result this framework will also provide us with preservation re- 

suits for not adding dominating reals in finite support products and finite support 

iterations. 

Let P be an arbitrary p.o. A function h: P --, w is a height  func t ion  iffp < q 

implies h(p) > h(q). A pair (P, h) is soft  iff P is a p.o., h is a height function on 

P, and the following two conditions are satisfied: 

(I) (decreasing chain property) if {p,,; n E to} is decreasing mad 3,n E to Yn E 

to (h(p,,) < m), then Bp E PYn E to (p < p,,); 

(II) (weak finite cover property) given m E to and {pi; i E n} C_ P there is 

{qj; j E k} C_ P so that 

(i) Vi E n, j E k, qj is incompatible with pi; 
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(ii) whenever q is incompatible with all pi and h(q) g rn then there exists 

j E k so that q < qj. 

We also consider the following property of pairs (P, h) - -  where P is a p.o. and 

h a height function on P: 

(*) given a maximal antichain {pn; n E w} C P and m E w there exists n e w 

such that: whenever p is incompatible with {pi; j E n} then h(p) > m. 

1.2 LEMMA: I f  (F,h) is soft, then (P,h)  has property (*). 

Proof.." Suppose not and let {p,~; n E w} and m E w witness the contrary. For 

each n E w let {qT; j E kn} be a weak finite cover with respect to {pi; i E n}, 

m according to (II). By assumption none of these sets can be empty arid we can 

assume that each q7 has height < m. By the cover property (II) (ii) they form 

an w-tree with finite levels with respect to "<".  By KSnig's Lemma this tree has 

an infinite branch. By (I) there is a condition below this branch, contradicting 

the fact that {Pn; n E w} is a maximal antichain. | 

1.3 THEOREM: Suppose P is a ccc p.o., h is a height fimction on P, and (P,h) 

satisfies property (*). Then any unbounded family of functions in w w fq V is still 

unbounded in V[G], where G is P-generic over V. 

Proof." Let F be unbounded in w w N V. Suppose I [ -P /E  w w. For each m E w 

let {prim; n E w} be a maximal antichain deciding the v a l u e / ( m ) .  Choose nm 

according to (*) so that: whenever p is incompatible with {p~';j E nm}, then 

h(p) > m. Define f:  w ~ w by setting f (m)  := the maximum of the values of 

/ ( m )  decided by {p~; j  E n,,~}. Let g E F be a function wlfich is not dominated 

by f .  We claim that [~-p " / d o e s  not dominate g". 

For suppose there is a p E P and a k E w so that 

p I}-Vm ___ k /(m) > g(m). 

Choose m >_ k so that h(p) <_ m and g(m) >_ f (m).  Then p must be compatible 

with p}n for some j E nm. But if q is a common extension, then 

q I~-/(m) > g(m) >_ f (m)  >_/(m), 

a contradiction. II 
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1.4 Towards the proof of Theorem 1: We think of B as consisting of sets B C_ 2 ~ 

of positive measure so that for all t E 2 <'~, if It] 13 B # 0 then p([t] 13 B) > 0; for 

m E w let B 13 2 m := {t E 2m; It] f3 B # {~}. Then we define the following p.o. 

(P,<): 
(B,n) EPv=:=~,BEB A n e w ;  

(B ,n )<(C ,m)¢ .  ; .BC_C A n>_m A B N 2 ' n = C 1 3 2  m. 

It follows from the ccc-ness of any product of finitely many copies [Je 2, part I, 

5.7] of B that P is ccc, too. Clearly, P generically adds a perfect set of random 

reals, and we have to show that it does not add dominating reals. To this end, 

we will introduce a height function on P. 

In fact, let Pt C_ P be the set of conditions (B, n) E P so that for all s 

in 2" 13 B, p([s] 13 B) > 2 -0h(~)+l). P' is dense in P (by the Lebesgue density 

Theorem [Ox, Theorem 3.20]). We define h: P' ~ w by h((B, n)) = n and work 

with P' from now on. 

1.5 LEMMA: (P', h) is soft. 

Remark: By 1.2 and 1.3 the proof of this Lemma finishes the proof of Theorem 

1. 

Proof: (I) is clear (for if {(B,,, m); n E w) is decreasing then (NBn, m) is a 

lower bound because we took our conditions from P'). For (II) we use: 

1.6 MAIN CLAIM: Given (B,n) ,  (C,m)  E P' and k E w there are tinitely many 

conditions {qi; i E j}  below (C, m) so that 

(i) each qi is incompatible with (B, n); 

(ii) i f  q is incompatible with (B, n), h(q) < k, and q <_ (C, m), then 3i E j 
(q < 

Proof." Without loss k ~ m, n. Assmne n > m. Let g be such that m < g < n. 

We now describe which conditions of height g we put into our finite set. 

(i) For each T C_ 2 t w i t h T [ m = C N 2 " ' a n d T C _ C 1 3 2  t a n d T # B ( 3 2  t 

let CT E B be such that CT 132 t = T and CT;3 It] = C (3 [t] for each t E T. If 

(CT, g) E P', then put (CT, g) into the set. 

(ii) For each T C_ 2" with Tim = CN2 '"  and T _C C N 2 "  and TIg = BN2 t 

and T ~ B 132" let CT E B be such that CT (32" = T and CT N [t] = C N It] for 

each t E T. If (CT, g) E P', then put (CT, g) into the set. 
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(iii) For each T _C 2" with Trm = CVI2 m and T _C CN 2 "  mad Tre = B N 2  t 

and T __D B N 2" and for each t E B fl 2" let CT, t E B be such that CT, t N 2" = T 

and CT, t N [s] = C fl [s] for each s E T \ { t }  and CT, t N It] = (C n [t]) -- B. If 

(CT, t, ~) e P', then put (CT, t, ~) into the set. 

It is easy to see that any condition of height e below (C, m) which is in- 

compatible with (B, n) lies below one the conditions defined in (i) - (iii) above. 

Next suppose that n < ~ < k. Then we can again find a finite set of 

conditions of height ~ satisfying the requirements of the main claim for conditions 

of height/? by an argument similar to the one in (i) - (iii) above. 

This takes care of the case when n > m. So assume now n _< m. Then we 

get our set of conditions as in the preceding paragraph. | 

1.7 Proof  of  (II) of Lemma 1.5 from the mafia clahn 1.6: We make induction 

using the main claim repeatedly. I.e. let (B, n) = P0 and (C, m) = (2 ~, 0) and 

apply the main claim to them to get {q~; i E j}.  Then let (B, n) = p~ and 

(C, m)  = qi (i E j )  and apply the main claim j times to get a uew family. Etc. 

| 

This finishes the proof of Lennna 1.5 and of Theorem 1. | 

1.8 THEOREM: 

(i) Suppose (Fc,, (Q,~, h~); a < t~) is a finite support iteration of arbitrary 

length ~ (~ timit) such that 

I -Po is ccc,   is a height eunction on 04 and ( ho ) satis es (,)". 

Then P~ = lim,~<~ F~ does not add dominating reals. 

(ii) Suppose ((F,~, h,~); a < ,~) is a sequence of soft ccc p.o.s of arbitrary length 

,~. Then there is a height fimction h on the finite support product F of the 

r'~ (~ < ,~) so that (F, h) is soft. 

Remark: In particular, both the finite support iteration aald the finite support 

product of an arbitrary number of ccc soft p.o.s does not add dominating reals 

(cf 1.2, 1.3). 

Proof: (i) It suffices to show by induction on a that 

I[-~ow ~' N V is unbounded in ~v ~. 
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If o~ is a limit ordinal, this follows from [JS 1, Theorem 2.2]. So suppose a 

is a successor. Then the result follows from Theorem 1.3 and the induction 

hypothesis. 

(ii) We make again induction on a. Let Q~ be the finite support product of 

the P~ where fl < a. We shall recursively construct height functions g~: Q~, ~ w 

such that 

(a) for a </3, ga C_ gt~; 

(b) g (q) > h (qrP ); 
(c) g (q) > Isupp(q)l; 
(d) (Qa,g,,) is soft. 

Clearly, a go satisfying (b) and (c) will satisfy the decreasing chain property (I) 

as well. (We assume without loss that V/3 < ~¢, h~(1 ) = 0.) 

We first deal with the case when a is a successor ordinal, a =/3 + 1. Then 

Q~, = Q~ x P~. Let m := max{g~(q), h~(p)} and define g~: Q~, --* w by 

f m + l  i f l s u p p ( q ) I = m a a a d p ~ l  
ga(q,P) t m otherwise 

for (q,p) E Q~ x P~. g,~ is a height function on Qc, which is easily seen to satisfy 

(a) - -  (e) above. 

To show that (Q,,,ga) satisfies the weak finite cover property (II), let 

{(qi,pi); i E n} be a finite subset of Q~ and let m E w. For each A C n let 

{qA; j E kA} be a weak finite cover with respect to {qi; i • A} and m in Q~ (i.e. 

(i) Vi • A, j • kA, q~ is incompatible with q~; and (ii) whenever q is incompati- 

ble with all qi (i • A) and h(q) < m then there exists j • kA so that q _< qA), 

and let {pA; j • tA} be a weak finite cover with respect to {pi; i • n ". A) and 

m. We claim that the f ami lyF :={ (qA,pA) ;  AC_n h i e k A  ^ j • t A } i s a  

weak finite cover with respect to {(qi,Pi); i • n} and m. 

Clearly, F satisfies (i) of the definition of the weak finite cover property 

(II). Furthermore, if (q,p) is incompatible with all (qi,pi) (i • n) there exists 

A C_ n such that q is incompatible with all qi for i • A and p is incompatible 

with allp~ for i • n \ A .  So ifg,~(q,p) < m (in particular, g~(q) <_ m and 

h~(p) <_ m) then we can find j • kA and j '  • gA such that q _< qA mad p < p~,; 

i.e. (q,p) <_ (q~,p~). This shows (ii) in the definition of the weak finite cover 

property (II). 

Now suppose a is a limit ordinal. Then let g,~ := [_J~<~, g~. ga clearly 

satisfies (a) - -  (c), and the weak finite cover property (II) for (Q,~, g,~) follows 
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from the weak finite cover properties of the (Qz, g3) for/~ < c, (because (II) talks 

only about finitely many conditions). I 

1.9 We note here that the notions discussed so far are closely tied up with some 

cardinal invariants of the contimmm. Nanmly, we let A/denote  the ideal of null 

sets and 

add(Af) := 

wcov(X) := 

cov(.N') := 

uni f (N)  := 

wunif(Af) := 

cof(Af) := 

b := 

d:= 

the least ~ such that 3 ~  E [AZ] ~ ([J Jr • Af); 

the least s such that 3~- E [Af] ~ (2 ~ ' \  [ .J~ does not contain a 

perfect set); 

the least ~ such that 3.$" e [Af] ~ ([.J.T -- 2'°); 

the least ~ such that [2'°] ~ \ A; ~ 0; 

the least ~ such that there is a family .T E [[2<'°]w] ~ of perfect sets 

with VN e Af 3T E 9 r (N N T = 0); 

the least ~ such that 3Q: • [N] ~ VA • .,V" 3B • ~" (A C_ B); 

the least ~ such that 3.T • [w~] ~ Vf • w" 3g • .T 3°°n (g(n) > 

f (n)) ;  

the least ~ such that 3~" • [ww] ~ Vf • w" 3g • ~" V~n (g(n) > 

f(n)). 

Then we c~m arrange these cardinals ill the following diagram. 

{ o  

J 

[ ............. :::1::: . ....... I i 

1 
w1 
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Here the invariants get larger as one moves up in the diagram, b >_ add(X)  (and 

dually d _< cof(Af)) is due to Miller [Mi]. The dotted line says that wcov(Af) _> 

min{cov(Af), b} (and dually, wunif(Af) _< max{unif(Af),d}). This can be seen 

from the Bartoszyfiski-Judah result (*) in the Introduction as follows. Suppose 

:-= wcov(A;) < min{cov(Af), b). Let M be a model of enough Z F C  of size A 

containing a weak covering family. As )~ < b there is a real f G w '~ dominating 

all reals in M. Let N be a model of enough Z F C  of size A containing M and f .  

As A < cov(A;), there is a real r e 2" random over N. By (*) this implies that 

there is a perfect set of random reals over M, a contradiction. - -  Iterating the 

p.o. from Theorem 1 we get: 

THEOREM 1': For any regular cardinal to, it is consistent that wcov(.h/') =- t¢ 

while b = wl; dually, it is consistent that wunif(Af) = wl while d = a. 

Proof." (a) Assume CH.  We make a finite support iteration of length a of the 

p.o. P described in 1.4. In the generic extension we have wcov(A f) = t¢ because 

we added !¢ many perfect sets of random reals; and b = wl by 1.5, 1.2 and 1.8 (i). 

(b) Assume M A  + 2 w -- ~; and make a finite support iteration of length 

wl of P. Again standard arguments show that wunif(Af) = wl and d = t~ in the 

generic extension. | 

The most interesting open question concerning the relationship between 

these cardinals is connected with Question 3 in the Introduction. 

QUESTION 3': Is it consistent that wcov(.N') :> d? Dually, is it consistent that 

wunif(A f) < b? 

1.10 Proof  of Theorem 2: By 1.2, 1.3 and 1.8 (ii) it suffices to show that there 

is a height function h: B --* w so that (B, h) is soft. But this is easy: for B G B 

let h(B)  := min{n E w; p(B)  > 1 | 

We note that this height function h and also the height function it induces 

on B x B by 1.8 (ii) have a strong finite cover property: (ii) in (II) can be replaced 

by: whenever q is incompatible with all Pi then there exists j E k so that q < qJ" 

2. Not adding perfect sets of  random reals 

2.1 This whole section is devoted to the proof of Theorem 3. Lemmata 2.2 and 

2.3 below which we single out from the principal argument bear the imprint of 



164 J.  B R E N D L E  AND H. J U D A H  lsr. J .  Math .  

the proof of Cichofi's Theorem in [BJ 1, 2.1 - 2.4]. The main uew idea comes in 

in 2.4. The rest (2.5 - 2.9) is mostly technical. 

Given k', k 6 w, k' < k, we let 

e ~ , k , : = 2 1 - k ' ( l +  + ' " +  k ' - I  )" 

Clearly, given any k' 6 w, we can find k > k' so that ek,k, is arbitrarily small. 

2.2 LEMMA: Given n ,k , k '  6 w (k' <_ k and k <_ 2") and Z C_ 2" and real 

numbers aT for each T C_ 2" with ]TN Z[ >_ k there exists Z' C_ Z of size <_ [Z[/2 

such that  ~"]~ITt~Z'I>k' aT > ~"~TaT • (1 --  ek,k' ). 

Proof: Let a := ~ T a T .  For any A close to 1 (A < 1) we can choose ~ 6 w and 

{Ti; i E ~} so that 

aT" A < [{i; Ti -- T}l .a < aT. A -1 

for all T. For i 6 g let Z~ := {Z' C_ Z; IZ' N T~I > k' and [(Z \ Z') n Ti[ > k'}. 

Then IZi[ .2-1Zl > 1 - ek,k, for all i 6 £. We claim that there is an X C g of size 

> g- (1 - ek,~,) so that ~ i e x  Zi # 0. 

For suppose not. Then for each Z' C_ Z, [{i 6 ~; Z' 6 Zi}l < ~" (1 - e~,k,). 

Hence 

21zl. e .  (1 - ~k.k') _< ~ IZ~I ---- ~ I{i e e; Z' e Z,}I < 2tzl .  ~. (1 - ~k,,,), 
iEt Z'CZ 

a contradiction. 

Now choose Z' 6 ~ i e x  Zi. Then either IZ'[ _< [Z[/2 or [Z \ Z'] _< IZ[/2. 

Assume without loss that IZ'[ <_ IZ[/2. Furthermore 

~-" aT'A- '> ~ I { i ; T ~ = T } I  

[TnZ' I>_k ' ITnZ' I>k' 
• a >  ~ . a > a . ( 1 - - e k , k , ) .  

Because there are only finitely many possibilities for the sum on the lefthand 

side, we can choose A so small that for the Z' chosen according to this A we have 

Z aT >- a" (1 --  ~k,k'). 
ITnZ'l>_k' 

This finishes the proof of the Lemma. | 
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2.3 LEMMA: Given a real e > 0 and m E to the following is true for large enough 

k ,n  E to: given reM numbers aT for each T C. 2" with ITI > k there exists a 

Z C_ 2" of size < 2 "-ra such that ~'~TnZ¢OaT ~ ~-~.TaT • (1 --e). 

Remark: We say that a statement is true for large enough n iff 3k E to so that 

Vn > k the statement is true. 

Proof." Construct recursively a sequence (ki; i < m) of natural numbers so that 

l 'Iie,.(1 - ek,+l,k,) > (1 -- ~) where k0 = 1. Let k > k,. and n so large that 

k < 2". Now apply Lemma 2.2 m times to get Z. II 

2.4 Diagonal chains: It turns out that a detailed investigation of matichains in 

B × B is necessary for the proof of Theorem 3. We say (p, q) E l~ × B is q u a d r a t i c  

iff #(p) = #(q). Clearly the quadratic conditions are dense in B × B so that it 

suffices (essentially) to consider them. More generally, given (p, q) E B x B, (p', q') 

is q u a d r a t i c  in (p, q) iff p' < p, q' < q and #(p')/#(p) = #(q')/#(q). 

{(p., q.); n E to} is said to be a first  o r d e r  d iagona l  chain  in B x B iff 

(1) each (p. ,  q.) is quadratic; 

(2) both {p.; n E to} and {q.; n E to} are maximal antiehains in B. 

More general ly we say that C = {(p. ,qn ), n E to, a , r  E t o < m ,  lh(a) 

lh(r), Vi E lh(cr) (a(i) # r(i))} is an ruth o r d e r  d iagona l  chain  in B x B (for 

m > 2) iff {(p~r,q~r) E C; lh(tr) < m - 1} is an (m - 1)th order diagonal chain 

and for each or, r of length m - 1 with r (m - 2) # ~r(m - 2), 
ttr o r  / a [ ( m - - 2 ) r l ( n t - - 2 )  ~rl(m-2)rl(,n-2 ), (1) Vn E to, (p. , q. ) is quadratic in LP.,(,I,-2) , qr(,,,-2) ); 

(2) {p~'; n E w} is a maximal antichain of conditions below _.I(,,,-2)~I(,,,-2) Pa(m-2) 
in B and {q~; n E to} is a maximal antichain of conditions below the 

_~/(ra-2)r F(m-2) condition q~(.,-2~ in B. 

P 
@ 

z/~/," z 

/ /  

.... s /  

j 
A second order diagonal chain 
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Clearly, below any antichain A in B x B there is an mth  order diagonal 

chain C for each m (in the sense that  any condition in C is below some condition 

in A). 

2.5 Towards the proof of Theorem 3: Let 5~ be a B x B-name so that  

I~-sxB "T is perfect". 

We want to construct a null set N in the ground model so that  

IF-B×B " g  n ~" # ¢". 

More exphcitly, using Lemma 2.3, we shall construct sequences (nm; m E w) and 

(Zm; m E w) so that  Zm C 2 n" ,  IZ,.I < 2 " . - - "  and 

Ik-B×B3x e ~" 3 ~ m  (zln, ,  ~ Z,,,). 

This will imply the required result for N := {z E 2"; 3°¢m (xrn , ,  E Zm)} is a 

null set (see below in 2.9). We set no := 0 and Z0 := 0. Now let m > 0 and assume 

that  n , , -1  and Z, , -1  have been defined. We shall describe tile construction of 

nm and Z,,. 

Let 6 > 0 be very small; let (zj; j Em) ,  (yj; j E m - 1) be sequences of 

natural  numbers so that  z0 > 1, yj = 4 • zj and yj/zj+l is very small; let ~ > 0 

such t ha t /~ -2 .  ~. rn.  z , , -1  is very small (in fact, we want that  

ltn--2 

( m = ( = 2 . m . ( e + ~ - 2 . ~ . m .  Zm_l+~)+ E YJ 
j=0 zj+l 

is - say - smaller than 1 /4" ;  cf 2.6); let v E w be such that  z,,,_~ 5 v .  (1 - e)2. 

Choose k according to Lemma 2.3 for ~ and m + 2 .nm_~.  Let {(p[',q'/~); i E 

w, a,r E w <m, lh(a) = lh(r), Vj E lh(a) (a(j) # r ( j ) )}  be an ruth order 

diagonal chain in B x B deciding ~" up to some level n~ ~" such that  for each 

s E 2 <r im- l ,  

either (pt[,,q~) [~-s E ~' A > k 

or (pt/t,q~r) [[-s ¢ ~'. 

We can construct this diagonal chain in such a way that  for a, r of length t < m 

(with Yj E t (a(j) # r(j))), 

1 , ttI(t--l)r[(/--1 ) a[(t -1)rI(t- -1)~ 
(5.1) EI~(P~' ,q~ r) < - " IttPa(t-O ,qr(t-,) ) 

t~ 
i 
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(where we make  the convention tha t  for t = 0, a = r = 0 ,  

p • I ( t - l ) r I ( t - l )  aI(t-l)rI(t-1) 
tt(/--1) = %(t-1) = 1 , 

the  max ima l  e lement  of B). 

We now define recursively which pairs  of sequences aT (G r E ~<,n,  lh(a) = 

lh(r), Vj E lh(~) (a(j)  # r(j)))  are r e l e v a n t .  For relevant pairs  we also define 

a ~'r E IR and  j ~ "  E w. 0 0  is relevant.  Choose j 0 0  E w such tha t  a 0 0  := 

~ i e j o o  p(p~)0) > 1 - e. Suppose a ~'~ and  jar  are defined for relevant  pairs  txr 

of  length t (0 < ~ < m - 1). Then  a^(i)r^(j) is relevant iff i , j  E j ~  and i # j .  

Fur thermore ,  for each such i , j ,  choose j~'(O~'(J) E ~ such tha t  

(5.2) a ~'(0~'(j) := 

Now let 

y ~  p(q~'(Or'(j)), p(p~r) ) p(p~r),  t t (q;r) .  (1 - e). 

i, Ej~'(O.'O) 

n m  : - :  n : =  m a x  nO r 
err relev&nt,iEj a*" 

Fix s E 2 - < ' ' - 1  . For T _C 2" with ITI _> k and ~ _c stem(T) and for relevant 

tuples aT let 

(5.3) a~. f := 

And let 

~(l lse~ ^ ~orn=TIIn(p?',q~)) , . i ( e - o . l ( t - , ) .  

i~j", p(p~,r) " / t (Pa( t - l )  )" 

i~J '" p(p~,r) "t 't~'~,(t-l) J. 

~'* = a ~T (this uses the finite addi t iv i ty  of  the measure  on Then  E T  a~ r ~- as 

r.o.(B x B) - see In t roduct ion) .  Let 

4 := E o': = E . r  
ih(*)----Ih(r)----j lh(tt)=lh(r)=j 

and a j :=  E a/T + a{ = E a*"-. 
T Ih(a)=lh(r)=j 

Let 

aT := 4 
ion  aJ - a~ 



168 J. BRENDLE AND H. JUDAH lsr. J. Math. 

Apply Lemma 2.3 to get Z,~ := Z" C_ 2" of size < 2 " -m-2" ' ' ' ~ - '  such that  

(5.4) ~ aT: EaT'(l--e)=m'(l--,). 
Tt"IZs~D T 

Finally, set Zm := Z :--- Uo~2<_..~_, Z ' .  This completes the construction of 

nr,, = n and Z, ,  = Z. 

2.6  MAIN CLAIM: Let s 6 2 < " ' - ~ .  Suppose (p,q) is a quadratic condition such 

that (p, q) I~- "s 6 "T A Z~n fl T, = 0". Then p(p, q) < 4A~ + (,,, (where 

m--2 

( m = ( = 2 " m ' ( e + 5 - 2 " e ' m ' z m - l + 5 ) +  Y~ YJ 
j=0 Zj+I 

as in 2. 5). 

Proof: The proof of the main claim will take some time (up to 2.8); to make 

our argument (which is essentially one big estimation) go through smoothly we 

need to make some conventions and introduce a few more notions. 

If tz is a sequence of length £ >_ 1, # = a[(£ - 1) will be the sequence with 

the last value deleted. For £ = 0, 

p ( ) 0  .00 = 1 
0( t - l )  = u()(t-i) , 

the maximal  element of the Boolean algebra B. ~ i j  will always stand for 

Ei,jEjt,~.,i#j, where a r  is clear from the context; similarly, ~"~q~ ,neans that  

the sum runs over all relevant trr of some fixed length e (where e is again clear 

from the context). For a relevant pair a r  we let 

(s.:) A "r := {i e j '~ ;  l,(P n p7 ~) < 5.  Z(p~,r)} 

(6.2) B ~'r := {i G j~'~; /~(q f) q~'~) < 5./,(q~'~)} \ A °~ 

(6.3) C ~'~ := j~'~ \ ( A  ~'r (J B ~'~) 

Let lh(a) = / h ( r )  = m - 1. We say the relevaaat pair o r  is nice iff 

(6.4) ~ p(q~'"). '~" 5 . 2 .  a"".  • • . /~(P,(m-2))--< e m z,,,_, 
iEC"" 
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More generally, if l h (a )  = / h ( r )  = e (where 0 < ~ < m - 1), we say the pair a r  

is n ice  iff 

(6.5) (I) Z li(q~r)" ~" 6-2 aar " l i (Pa( t - l ) )  <- " • e m .  z,,,-1; 
i E C " "  

(6.6) (II) Z aa'(i)r'(J) >- (I - yt ). Z aa'(i)r'(J)" 
i j , ~ ' ( i ) r ' ( j ) n i c e  Zt+ l  i j  

(Note that this is a definition by backwards recursion on &) 

2.7 CLAIM: For any  ~ (0 < ~ < m - 1), 

(7.1) a _>(I- 1--).a ̀. 
zt a r  nice 

Proof: We first show that for any ~ we have 

(7.2) 6 -2 a t e.m - > Z Z li(qF~')" a÷ • • ) 
~ B 

a t  l E O  o" 

B y  construction (5.4), ~']~TnZ'¢~ a T  >_ m "  (1 --  e); i.e. 

4 >,,.(1-,). 
T o Z  ° Cg  j E m  a J  - -  a~  - 

Hence E T n Z . ¢ ~ a t T  >_ (a t -- ate)(1 -- e. m). As ( v ,q )  I~ - ' ' s  e T A • rn  N Z" = 0" 

we get (using (5.3) and also the definition of C ar ((6.1) - -  (6.3))) 

• _ _ _ , p ~ +  , I t ( p  f3 p [ r ,  q N q ~ r )  
a' e.m>(a' a ' ° ) 'e 'm>Z Z llt a(,-,))" li(p[,) 

a r  i E C  ~r 

__~2. Z Z li(q~r). ~/'(P~(~'t--1))" 
a r  i E C " "  

This shows that formula (7.2) holds. 

Next, we prove the claim by backwards induction. So assume ~ = m - 1. In 

that case, it follows immediately from formula (7.2) and the definition of niceness 

(6.4) that 

Z aar > ( 1 -  1 ).am_l. 
t t r  nice Z m - I  
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So let t < m - 1 and assume the claim has been proved for ~ + 1. We let 

E(I) := {at; lh(a) = lh(r) = £ and ar satisfies (I) of the definition of niceness} 

and E(I I )  := {at; lh(a) = lh(r) = t and aT satisfies (II) of the definition of 

niceness}. By the argument of the preceding paragraph we know that 

E a ~ r - > ( 1 -  1 ) 'at"  
Zm- 1 

t, r E E ( l )  

We claim that 

(7.3) E E a"(O~"(S) > (1 - 1 ) .  at+, . 
yt arEE(II) iS 

For suppose not. Then 

I at+l E E aa'(i)r'(s) > - "  " 
arq~E(II) ij Yt 

But if ar does not satisfy (II) then 

E aa'(i)r'(J) > Yt . E aa'(i)r'(J)" 
zt+ 1 ij,a'(i)v'(j)not nice ij 

Hence 
1 at+l E E aer'(i)r'(J) > - - "  ' 

zt+ 1 ar~.V.(ll) ij,a'(i)r'(j)not nice 

contradicting the induction hypothesis. 

As 
1 1 .,,+, + ~ ~ .(pV,qV)< 1 (1 - e) .  a t < I--~ 

~r iES" 

((5.1) and (5.2)), we have 

1 a t+l > (1 - 1 1 
( 1 -  e) 2 " - v" ( 1 -  e) 2 )" at. 

Hence by (7.3) 

. at+l + 1 .  1 
v 1 - e  

urE~(ll) ttrEE(II) i$ 

>(1- -~) .a t  +' >(1-- ± -  1. 1 
- - y t  v ( 1  - e )  2 

Putting everything together we get that 

x--" . . ,  I i I i 1~ 
st ~nice > ( 1 -  Zm--, - y--e - v "  ( 1 -  e) 2 2 . e ) - a  t > ( 1 -  --zt/" at. 

This shows in particular that the pair 00  is nice. 

2 • 6) • a t. 

- -  . a t 

| 
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2 . 8  CLAIM: 

(S.1) 

where 

PERFECT SETS OF RANDOM REALS 

If  av is nice of length ~ (0 < ~ < m - 1) then 

/~(p ~,~ a~ 1 " P ( P ~ r ( t - l ) , q r ( t - O ) ,  n Pa(t-1), q n q,(t-~)) < (4,,--~_t + Ct) o~- ,~- 

l i t  - - 2  

( t : = 2 " ( m - e ) ' ( e + 6 - ~ ' e ' m ' z m - ' + 8 ) +  Z yj 
j=t zj+l 

(in particular ~o = ~ ). 

Proo£" We know that for arbitrary nice ar, 

6 - 2 . a  o r  e m .  Z m _ l  --> Z p ( q a r )  a÷ • " "l~.P~t-i~.( ) 
% f 

i E C  ~ 

171 

Also 

~ - 2  . a a r  . e . m . Z m _ l  "14q~(t-~)). 
i E C  ~r 

i E j  , r  i E A  °~" i E j  "~ i E B ' "  

So it suffices to calculate ~'~iEB'',jEA'" ~(p~r np ,  q~" n q). 
For this, we make again backwards induction on L Assmne ~ = m - 1. 

Then the disjointness of B ar and A ~" (see (6.1) - (6.3)) implies that 

~r I a~ b~ 
Z PiP N p~r, q N qj ) < ~ .  P(P¢(m-2), qr(,n-2))" 

i E B ¢ ' , j E A  e ,  

Now it follows from the discussion in the preceding paragraph (mid (5.2)) that 

formula (8.1) holds for £ = m - 1. 

So assume the claim has been proved for ~ + 1 < m - 1. Let a r  be nice of 

length L Then (6.6) 

(8.2) ~ a , ' ( i ) , ' ( j )  < y t  ~ ~ - " I ~ ( P , ( t - l ) , q , ( t - l ) ) "  
i j , ¢ ' ( i ) T ' ( j ) n o t  nice Zl'l" 1 

(cf (6.4) and (6.5)), and, by symmetry (because our conditions are relatively 

quadratic), 
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And by induction (and the disjointness of B °" and A ~'') we have 

#(pnp~",qOq'[") < (4, , l t_  1 +Q+I)" Y~ #(p[",q~") 
i E B  *~" 
jEA¢~" 

iEB *r 
(s.31 teA'" 

o"(i)r '( j)nice 

1 1 
#(Po(t-l), q~.(t-l)). < ~ "(¥ . , - t -1  + Ct+~)" ~* ~" 

Putting everything ((5.2), the first paragraph of this proof, (8.2), (8.3)) together 

we get again that formula (8.1) holds. I 

The main claim 2.6 now follows from claims 2.7 and 2.8. 1 

2.9 Proof of Theorem 3 from the Main Claim 2.6: 
N := {x • 2"; 3°°m (x[nm • Zm)}. Then 

y :  Iz,,,I < 2 - "  < oo. 
1|m - -  

m m 

Hence N is a null set coded in V. We claim that 

As remarked in 2.5 we let 

IFa×B:r n N # ¢. 

We first note that it suffices to prove 

IFB×BVl • ,~ W • ~ (lh(~) = nt 

3 ° ° m  > ~ 3t  ( :h (O = n , ,  ^ ~ c_ t ^ t • ~" n Zm)). 

For if the latter holds then we can recursively construct all x • T[G] N N in the 

generic extension V[G]. 
So assume that there is a (p, q) • B x B, an ~ • w and an s of length nt 

such that 

(p ,q )  I1-~ e ~ ' ^ v m  > ~vt ((:h(t) = " m  A • C__ t) ~ t ¢ T~"l Zm);  

i . e .  

Without loss (p, q) is quadratic. Choose m )_ £ so large that p(p, q) >_ 1/4 m + ~m. 

Then 

(p, q) IF~ e ~ ^ z.', n ~ = 0 

contradicts the main claim 2.6. $ 
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3. Final  remarks 

3.1 We discuss the relationship between C* B, B* C - B × C and B × B. Truss 

[T 2] proved that C * B cannot be completely embedded in B * C by showing 

that the former adds a new uncountable subset of wl containing no old countable 

subset whereas the latter does not. In fact, he proved [T 2, Theorem 3.1] that any 

uncountable subset of wl in V[r], where r is random over V, contains a countable 

subset in V; the rest follows from the fact that C has a countable dense subset. 

It is easy to see that Truss' argument for B can be generalized to B x B so that 

C * B cannot be completely embedded in B x B either. 

Another argument for showing that C * B cannot be completely embedded 

in B * C is by remarking that the former produces two random reals the sum of 

which is Cohen (namely, let c be Cohen over V and r randonl over V[c]; then 

both r and c - r are random over V) whereas the latter does not (by [JS 2, 2.3], 

if we force with C over V[r], r random over V, then xlo new real is random over 

V; so the sum of two random reals must lie in V[r] and cannot be Cohen). ~ x B 

also produces two random reals the sum of which is Cohen (by [Je 2, part  I, 5.9], 

if r0, rl are the random reals added by B x B, then r0 + rl is Cohen). So B x B 

cannot be completely embedded in B * C. 

On the other hand, Pawlikowski (see the last paragraph of §3 in [PaD 

proved that B * C can be completely embedded into any algebra adding both 

Cohen and random reals; in particular B * C <c C * B and B * C <c B x B, where 

<c means is complete  subalgebra of. Hence the only question left open is 

whether B x B <~ C * B (Question 1). 

3.2 We continue with a remark concerning Question 2. Namely, suppose there 

are models of Z F C  M C_ N such that N contains both a dominating and a 

random real over M, but does not contain a perfect set of random reals over M. 

Without loss, N = M[r][d], where r is random over M, and d is dominating over 

M. By the w~'-bounding property of random forcing [Je 2, part I, 3.3 (a)], d is 

dominating over M[r]. Let c be Cohen over N. A result of Truss IT 1, Lemma 

6.1] says that d + c is Hechler over M[r]. 

(Recall that Hechler forcing D is defined as follows: 

D:= {(n,/); new A / EoY}, 

(n,g)  _< (re, f )  i f fn  _> m andVg E w (g(g) >_ f(g))  and f i r e  = grm. D generically 

adds a dominating real.) 
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By [as 2, 2.3] there is no new real rmadom over M in N[c], in particular, 

there is no perfect set of random reals over M in N[c], thus showing that B*D -~ 

B x D does not add a perfect set of random reals. Hence Question 2 is equivalent 

to 

QUESTION 2': Does B × D add a perfect set of raadom reals? 

We will now see that for many forcing notions P adding a dominating real it is 

true that B x P adds a perfect set of random reals. 

3.3 PROPOSITION: Let M be Mathias forcing. Then B x M adds a perfect set of 

random reals. 

Remark: Mathias forcing is defined as follows. 

M := {(s,S); a • w <~' A S • [w]" A maxs  < rainS}, 

(t, T) <_ (s, S) iff t _D s and T C_ S and Vn • dora(t) \ dom(s) (t(n) • S). 

Sketch ofproo£" In V[G], where G is B x M-generic over V, let 7" be the random 

real and d the Mathias real (which is dominating). We claim that 

T := {f • 2~'; Vn • w ( f I[d(n) ,d(n  + 1)) 

= r[[d(n),d(n + 1)) V f I [d(n) ,d(n  + 1)) 

= (1 - r ) r [ d ( n ) , d ( n  + 1)))} 

is a perfect set of reals random over V in V[G]. 

We show that given a null set N • V and a condition (B, (s, S)) • B x M, 

there is a (B',  (s, S')) < (B, (s, S)) such that 

(B',  (s, S')) [I-T Iq g = 0, 

where T is a name for the perfect set defined ahove. First note that by [Ba] 

there are partitions {Ii; i • w} mad {I[; i • to} of w into finite intervals with 

max(//) < nfin(Ij), max(I;) < min(I~) for i < j ,  sequences (Ji; i C w) and 

(J~; i E w) such that 

Ji C_ 2 I', 

and 

c JJ, I v"  !,J!,! 

N C_ {f e 2~; 3°°n ( frI , ,  • J .)} U {f e 2~; ::l°°n (frAy, • J:,)}. 
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Now find S' C_ S such that for all n E w, IS' f3 I , [  < 1 and IS' f3 I~,[ < 1. 

" the unique element of S' f3 1" (if Let in be the unique element of S' f3/,,, mid z,~ 
• l ! 

it exists - -  if not, let in E I ,  and z n E I~, be arbitrary). Set 

g , , : =  { sE2f~ ;  s E J n  V 1 - s E J , ~  V ( s r i n ) O ( 1 - s r [ i n , o o ) ) E J , ,  

v (1 - ~ r i . ) u ( ~ r [ i . , ~ ) )  ~ J . } ;  

similarly we define K ' .  We choose B'  _< B such that 

B'  t3 ({ f  E 2"; 3°°n ( f I I ,  E Kn)} U {f  E 2'~; 3 ~ n  (fII~, E K~,)}) = O. 

We leave it to the reader to verify that this works. | 

We note that a similar argument works for Laver forcing, for Mathias forcing 

with a q-point ultrafilter etc. But it is unclear whether B • M adds a perfect set 

of random reals. 
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